CW High School Advanced Math A

1. Functions and Math Models (16.67\%)

Learning Targets

1.1 I can make connections between the algebraic equation or description for a function, its name, and its graph.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can make connections between the algebraic equation or description for a function, its name, and its graph.
$\mathbf{3}$	Beveloping	I can interpolate and extrapolate values from a graph and equation describing a graph.
$\mathbf{2}$	I can state the locations of minimums, maximums, intercepts, asymptotes, and the domain and range of functions.	
$\mathbf{1}$	Minimal	I can complete a table for a function from data and equations, then plot points to form a graph.
$\mathbf{0}$	No Evidence	No evidence shown.

1.2 I can recognize the shape of a function from its equation, dialate it, translate it, and graph its absolute value.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can recognize the shape of a function from its equation, dialate it, translate it, and graph its absolute value.
$\mathbf{3}$	Developing	I can shift a graph horizontally and dialate it.
$\mathbf{2}$	Minimal	I can sketch graphs of from recalling their parent graphs.
$\mathbf{1}$	No Evidence	No evidence shown.

1.3 I can use composite functions to prove two functions are inverses.

Learning Target	Descriptor	
$\mathbf{4}$	Proficient	I can use composite functions to prove two functions are inverses.
$\mathbf{3}$	Developing	I can write a function that represents the composition of two functions.
$\mathbf{2}$	Basic	I can find the inverse of a function and graph the function and its inverse on the same graph.
$\mathbf{1}$	Minimal	I can analyze a composite function at an x-value.
$\mathbf{0}$	No Evidence	No evidence shown.

1.4 I can use a graphing calculator to completely analyze a function. (intercepts, min and max, intersection of two graphs, calculate a value)

CW High School Advanced Math A

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can use a graphing calculator to completely analyze a function. (intercepts, min and max, intersection of two graphs, calculate a value)
$\mathbf{3}$	Developing	I can locate any maximum and minimum values of a function on a graphing calculator to 4 decimal places.
$\mathbf{2}$	Basic	I can use a graphing calculator to locate x and y intercepts of a function to 4 decimal places.
$\mathbf{1}$	No Evidence	No evidence shown.

2. Trigonometric Functions (16.67\%)

Learning Targets

2.1 I can sketch any angle in degrees, minutes, and seconds from standard position, state its reference angle, and find two co-terminal angles for it.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can sketch any angle in degrees, minutes, and seconds from standard position, state its reference angle, and find two co-terminal angles for it.
$\mathbf{3}$	Developing	I can sketch a reference angle for any angle on a unit circle from.
$\mathbf{2}$	Minimal	I can sketch any + an - angle on a unit circle from -360 to +360.
$\mathbf{1}$	No Evidence	No evidence shown.

2.2 I can find the values of the six trigonometric (trig) functions for any point or common angle on the unit circle and apply them to simplify expressions.

Learning Target	Descriptor	Definition
4	Proficient	I can find the values of the six trigonometric (trig) functions for any point or common angle on the unit circle and apply them to simplify expressions.
3	Developing	I can find the exact values of sine, cosine, and tangent for any point or common angle in quadrants I and II.
2	Basic	I can use the side ratios for 45-45-90 and 30-60-90 triangles to state the exact sine and cosine of any common angle in quadrant I.
1	Minimal	I can plot any point on the coordinate system and find the sine and cosine of the reference angle created.

CW High School Advanced Math A

Learning Target	Descriptor
0	No Evidence

2.3 I can find any angle described by any of the trig functions and its quadrant by utilizing an inverse trig operation and the periodicity of trig functions.

Learning Target	Descriptor	Definition
4	Proficient	I can find any angle described by any of the trig functions and its quadrant by utilizing an inverse trig operation and the periodicity of trig functions.
3	Developing	I can find the inverse of any of the six trig functions and explain what the answer means.
2	Basic	I can use the inverse trig functions on a calculator to find the inverse of any of the six trig functions.
1	Minimal	I can use a calculator to find the inverse of sine, cosine, and tangent.
0	No Evidence	No evidence shown.

2.4 I can draw a figure to represent a given problem and use the appropriate right triangle trig to solve for any required angle or side.

Learning Target	Descriptor	Definition
4	Proficient	I can draw a figure to represent a given problem and use the appropriate right triangle trig to solve for any required angle or side.
3	Developing	I can apply the six trig functions to solve right triangle problems for any side or angle..
2	Basic	I can use right triangle trig to solve for an unknown side where division by the sine, cosine, or tangent of the angle is necessary.
1	Minimal	I can use right triangle trig to solve for an unknown side of a right triangle where multiplication is necessary.
0	No Evidence	No evidence shown.
lications of Trigonometric and Circular Functions (16.65\%)		
rning Targets		
I can write an equation to describe any periodic function using either radians or degrees and sketch any periodic function from an equation		
Learning Target	Descriptor	Definition
4	Proficient	I can write an equation to describe any periodic function using either radians or degrees and sketch any periodic function from an equation.
3	Developing	I can sketch the graph of a sine or cosine function, state its amplitude, sinusiodal axis, vertical and phase shift given an equation using radians.

CW High School Advanced Math A

3.4 I can identify or measure the appropriate values and generate a mathematical model to represent periodic situations in a lab setting or in real-world written problems, then analyze that function for specific x and y values to test its validity.
Learning Target Descriptor Definition

4 Proficient I can identify or measure the appropriate values and generate a mathematical model to represent periodic situations in a lab setting or in real-world written problems, then analyze that function for specific x and y values to test its validity.

CW High School Advanced Math A

Learning Target	Descriptor	Definition
3	Developing	I can identify or measure the appropriate values, sketch and generate mathematical models to represent periodic situations in a lab setting and written problems.
2	Basic	I can accurately measure period, amplitude, sinusiodal axis, and any phase shift in a lab setting, then sketch a graph of the motion.
$\mathbf{1}$	I can accurately identify period, amplitude, sinusoidal axis, and any phase shift in a real-world periodic written problem, then sketch a graph of the motion.	
No Evidence	No evidence shown.	

4. Properties of the Trigonometric Functions (16.67\%)

Learning Targets

4.1 I can prove each of the Pythagorean Properties and solve each of them for a different function.
Learning Target Descriptor Definition

4	Proficient	I can prove each of the Pythagorean Properties and solve each of them for a different function.
3	Beveloping	I can correctly solve Pythagorean Properties for a different function.
$\mathbf{2}$	I can correctly state the three Pythagorean properties.	
$\mathbf{1}$	No Evidence	No evidence shown.

4.2 I can use reciprocal, quotient, and Pythagorean properties to produce simplified and transformed trig expressions.

Learning Target	Descriptor	Definition
4	Proficient	I can use reciprocal, quotient, and Pythagorean properties to produce simplified and transformed trig expressions.
3	Developing	I can transform trig expressions where multiplication by a conjugate is necessary.
2	Basic	I can transform trig expressions involving addition and subtraction of fractional expressions by utilizing a common denominator.
1	Minimal	I can transform a trig expression into another that involves multiplication and distribution by re-writing all functions in terms of sine and cosine.

4.3 I can write a general solution to a trig equation using "arc" notation and use it to find multiple values of where a function is equal to a particular y value.

CW High School Advanced Math A

Learning Target	Descriptor	Definition		
$\mathbf{4}$	Proficient	I can write a general solution to a trig equation using "arc" notation and use it to find multiple values of where a function is equal to a particular y value.		
$\mathbf{3}$	Developing	I can solve a trig expression for values of x where a function is equal to a value using "arcs."		Basic
:---				
$\mathbf{1}$				
$\mathbf{0}$				

4.4 I can use various rules to transform trig expressions from sums to products and vice versa and use composite arguments to simplify trig expressions using common angles.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can use various rules to transform trig expressions from sums to products and vice versa and use composite arguments to simplify trig expressions using common angles.
$\mathbf{3}$	Developing	I can transform a product of two trig functions as a sum or difference.
$\mathbf{2}$	Minimal	I can use a composite argument to rewrite sine, cosine or tangent of angles that are sums or differences of common angle. le.. 75 degrees.
$\mathbf{1}$	No Evidence	No evidence shown.

5. Trigonometric Functions and Angular Velocity (16.67\%)

Learning Targets

5.1 I can find linear and angular velocities at any location on single rotating objects and convert back to revolutions per unit of time.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can find linear and angular velocities at any location on single rotating objects and convert back to revolutions per unit of time.
$\mathbf{3}$	Basic	I can recognize that the angular velocity on a rotating object is always the same, but the linear velocity increases as radius increases.
$\mathbf{2}$	Minimal	I can convert angular velocities from revolutions or degrees to radians per unit of time.

5.2 I can find the linear and angular velocities anywhere on a system of two or more rotating objects that are connected.

CW High School Advanced Math A

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can find the linear and angular velocities anywhere on a system of two or more rotating objects that are connected.
$\mathbf{3}$	Beveloping	I can calculate the angular velocities of two rotating objects by using their common linear velocity.
$\mathbf{1}$	Minimal	I can recognize that the linear velocities of the edges of two rotating objects are the same.
$\mathbf{0}$	No Evidence	No evidence shown.

5.3 I can identify or measure the appropriate values to calculate the angular and linear velocities of rotating objects in a lab setting or in realworld written problems, and write sinusoidal equations to represent the motion.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can identify or measure the appropriate values to calculate the angular and linear velocities of rotating objects in a lab setting or in real-world written problems, and write sinusoidal equations to represent the motion.
$\mathbf{3}$	Developing	I can link two rotating objects together using my measurements and calculate angular and linear velocities.
$\mathbf{2}$	Basic	I can can use my measurements to calculate angular and linear velocities on a single rotating object.

6. Triangles and Vectors (16.67\%)

Learning Targets

6.1 I can compute the side length or angle measure of a triangle using the law of sines where an angle and opposite side are known.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can compute the side length or angle measure of a triangle using the law of sines where an angle and opposite side are known.
$\mathbf{3}$	Developing	I can use the law of sines to find a missing angle if all angles are known to be less than 90 degrees.
$\mathbf{2}$	Minimal can use the law of sines to find a side length	I can identify what type of triangle can be solved using the law of sines.
$\mathbf{1}$	No Evidence	No evidence shown.

6.2 I can apply the law of cosines to solve a triangle given two sides and an included angle or all three sides of the triangle.

CW High School Advanced Math A

Submitted on 2/3/2022 by Wendy Weaver

